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The addition of alkyl nitronate anions to PMB imines, derived from benzaldehyde or straight-
chain carbaldehydes, in the presence of a Bronsted acid, proceeds in greater than 90% yield with
up to 10:1 diastereoselection favoring the anti isomer. The mechanism of this addition reaction is
intriguing and is under investigation. The moderately unstable â-nitro amines can be reduced with
samarium diiodide and the PMB group removed with CAN, in good overall yields, to give sensitive
1,2-diamines without erosion of diastereoselectivity. This protocol represents a new, stereoselective
synthesis of certain 1,2-diamines.

The 1,2-diamine structural motif is important in
biologically active natural products,1 in medicinal chem-
istry,2 and more recently in their use as chiral auxiliaries
and chiral ligands in asymmetric catalysis.3 While a
number of intriguing reports have appeared detailing the
stereoselective generation of 1,2-diamines, the diaste-
reoselective synthesis of 1,2-disubstituted 1,2-diamines
to date relies upon the conversion of alkenes via diols
and diazides4 or aziridines,5 aza-pinacol-type coupling of
two imines,6 conversion of enantiomerically pure natu-
rally occurring amino acids,7 the addition of R-nitrogen
carbanions to imines,8 and the use of chiral auxiliaries.9
The scope of these methods is limited due to the vari-
ability in diastereoselection and, where appropriate, the
availability of enantiomerically pure starting materials,
the nature of the chiral auxiliary, or in many cases the
basicity of the reaction conditions.23 Herein, we describe
the nitro-Mannich reaction as part of a mild and general
stereoselective method for the synthesis of 1,2-diamines
that has the potential to produce enantiomerically pure
products.

For our methodology to be as flexible as possible, we
required a method of bringing two nitrogen-containing
fragments together stereoselectively. To maximize the
diastereoselectivity, we believed that we needed a reac-
tion that proceeded through a six-membered, Zimmer-
man-Traxler-like transition state. We concentrated on
transition states 1, which involved the addition of an
R-aza carbanion to an imine. Two possible scenarios
required the addition of metalated hydrazones or nitro-
nate anions to imines via transition states 2 and 3,
respectively.

It is known that tert-butylhydrazones add to ketones
to form R-hydroxy hydrazones.10 Our attempts at the
analogous addition reaction between N-benzylidene-tert-
butyl- or -tert-butyldiphenylmethylhydrazone11 and N-
benzylidenebenzylamine were unsuccessful. However,
deprotonation of nitropropane with n-BuLi followed by
addition of N-benzylidenebenzylamine to the resultant
nitronate ion (1.1 equiv with respect to imine) and
quenching with acetic acid (AcOH) at -78 °C furnished
the â-nitro amine 412 in virtually quantitative yield with
a diastereoselection of greater than 15:1 by 1H NMR
(Scheme 1). As the addition product 4 is analogous to
those obtained from the diastereoselective nitroaldol
studies of Seebach et al.13 the major diastereoisomer was
assigned on the basis of a similar 1H NMR analysis. The
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assumption was made that the more highly populated
conformations are those in which there is a hydrogen
bond between the vicinal NH and ON-O groups as in
4-anti and 4-syn. This same analysis was used in the
assignment of future additions (vide infra) and was
supported by a single-crystal X-ray analysis of the cyclic
urea 6 derived from 5.14

To produce the desired 1,2-diamine, we required the
reduction of the alkyl nitro function to a primary alkyl-
amine. Most common descriptions concerning the reduc-
tion of nitro compounds refer to aromatic systems. In
addition, 4 is unstable to chromatography and prolonged
periods in solution due to â-elimination.15 Consequently,
standard reducing systems invariably gave dibenzyl-
amine as the chief reduction product. Fortunately, sa-
marium diiodide gently reduces the nitro function to our
desired primary amine 516 in 62% yield.15b,17 Hydro-
genolysis of the N-benzyl group of 5, to give the naked
1,2-diamine, caused many problems due to other sites
being susceptible to cleavage. It was at this point that
we optimized the reaction conditions using N-(4-meth-
oxybenzyl)imines as the N-4-(methoxybenzyl) (PMB)
group could be easily removed using ceric ammonium
nitrate (CAN).18 The general three-step sequence is
outlined in Scheme 2 with a selection of representative
examples in Table 1.

Entries 1-3 examine which substituents are tolerated
on the aldimine fragment. The success of the n-pentyl-
imine in entry 2 is indicative of the mild reaction
conditions of this method. Although steric hindrance in
the imine partner does not appear to affect the yield of
the coupling, the diastereoselection is drastically dimin-
ished (entry 3). Tertiary nitronate anions are tolerated
(entry 4) and still accomplish a moderate yield for the
three-step synthesis of this particular 1,2-diamine (9, R1

) Me2, R2 ) Ph). The reversal of stereoselectivity with
phenyl nitromethane (entry 5) is curious, but we have
verified this structural assignment by single-crystal X-ray
analysis. An account of this anomaly awaits further
mechanistic studies, which will elucidate a working
transition-state model for these reactions. This addition
product (7, R1 ) Ph, R2 ) Ph) was too unstable to survive
even the mild reducing conditions employed in this
sequence. An imine derived from 2-benzyloxyacetalde-
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corresponding carbon analogue gave the expected level
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pounds with PMB imines derived from benzaldehyde or
straight-chain carbaldehydes.19 Further studies concern-
ing heteroatom substituents on the nitroalkyl fragment
and imines derived from substituted benzaldehydes are
underway to further define the limitations of this meth-
odology.
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thermodynamically impossible.20 This reaction (Scheme
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Scheme 1 Scheme 2

Table 1. Synthesis of Representative 1,2-Diamines

entry R1 R2
yielda

of 7 (%)

diastereo-
selectivityb

anti/syn
yieldc

of 8 (%)
yieldd

of 9 (%)

1 Et Ph 90 10:1 60 96
2 Et n-Pn 95 9:1 66 100
3 Et c-Hex 95 2:3 45 86
4 Me2 Ph 60 48 86
5 Ph Ph 74 1:15
6 Et CH2OBn 95 3:2 77 100
7 Et (CH2)3Ph 95 7:1 52 76
a Crude yield estimated from mass balance and NMR. b From

250 MHz 1H NMR (CDCl3). c Isolated yield over two steps with
respect to imine. d Isolated yield.
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Whether it is added to the nitronate anion or to the bulk
reaction mixture, the outcome of the reaction is identical.
Control experiments suggest that the diastereoselection
is derived from the addition of the two reaction partners,
not through equilibration to a tertiary nitronate anion
and subsequent protonation.21 Further studies are un-
derway to determine whether a nitronic acid or a proto-
nated imine is a key intermediate to elucidate the mech-
anism of this reaction.22

In summary, we have developed a three-step diaste-
reoselective synthesis of 1,2-diamines that involves the
coupling of alkyl nitro compounds and aldimines in good
overall yields. Mechanistic studies, catalytic studies, and
methods to control the absolute stereochemistry of the
products, to further develop the stereoselective nitro-
Mannich reaction, are underway and will be reported in
due course.
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